We propose a multi-robot control paradigm to solve point-to-point navigation tasks for a team of holonomic robots with access to the full environment information. The framework invokes two processes asynchronously at high frequency: (i) a centralized, discrete, and full-horizon planner for computing collision- and deadlock-free paths rapidly, leveraging recent advances in multi-agent pathfinding (MAPF), and (ii) dynamics-aware, robot-wise optimal trajectory controllers that ensure all robots independently follow their assigned paths reliably. This hierarchical shift in planning representation from (i) discrete and coupled to (ii) continuous and decoupled domains enables the framework to maintain long-term scalable motion synthesis. As an instantiation of this idea, we present LF, which combines a fast state-of-the-art MAPF solver (LaCAM), and a robust feedback control stack (Freyja) for executing agile robot maneuvers. LF provides a robust and versatile mechanism for lifelong multi-robot navigation even under asynchronous and partial goal updates, and adapts to dynamic workspaces simply by quick replanning. We present various multirotor and ground robot demonstrations, including the deployment of 15 real multirotors with random, consecutive target updates while a person walks through the operational workspace.