Using the bit string generation problem as a case study, we theoretically compare two standard methods for adapting large language models to new tasks. The first, referred to as supervised fine-tuning, involves training a new next token predictor on good generations. The second method, Best-of-N, trains a reward model to select good responses from a collection generated by an unaltered base model. If the learning setting is realizable, we find that supervised fine-tuning outperforms BoN through a better dependence on the response length in its rate of convergence. If realizability fails, then depending on the failure mode, BoN can enjoy a better rate of convergence in either n or a rate of convergence with better dependence on the response length.