This paper quantitatively investigates the crash severity of Autonomous Vehicles (AVs) with spatially localized machine learning and macroscopic measures of the urban built environment. We address spatial heterogeneity and spatial autocorrelation, while focusing on land use patterns and human behavior. Our Geographical Random Forest (GRF) model, accompanied with a crash severity risk map of San Francisco, presents three findings that are useful for commercial operations of AVs and robotaxis. First, spatially localized machine learning performed better than regular machine learning, when predicting AV crash severity. Bias-variance tradeoff was evident as we adjust the localization weight hyperparameter. Second, land use was the most important built environment measure, compared to intersections, building footprints, public transit stops, and Points Of Interests (POIs). Third, it was predicted that city center areas with greater diversity and commercial activities were more likely to result in low-severity AV crashes, than residential neighborhoods. Residential land use may be associated with higher severity due to human behavior and less restrictive environment. This paper recommends to explicitly consider geographic locations, and to design safety measures specific to residential neighborhoods, when robotaxi operators train their AV systems.