Floods are among the most frequent natural hazards and cause significant social and economic damage. Timely, large-scale information on flood extent and depth is essential for disaster response; however, existing products often trade spatial detail for coverage or ignore flood depth altogether. To bridge this gap, this work presents HOTA: Hierarchical Overlap-Tiling Aggregation, a plug-and-play, multi-scale inference strategy. When combined with SegFormer and a dual-constraint depth estimation module, this approach forms a complete 3D flood-mapping pipeline. HOTA applies overlapping tiles of different sizes to multispectral Sentinel-2 images only during inference, enabling the SegFormer model to capture both local features and kilometre-scale inundation without changing the network weights or retraining. The subsequent depth module is based on a digital elevation model (DEM) differencing method, which refines the 2D mask and estimates flood depth by enforcing (i) zero depth along the flood boundary and (ii) near-constant flood volume with respect to the DEM. A case study on the March 2021 Kempsey (Australia) flood shows that HOTA, when coupled with SegFormer, improves IoU from 73\% (U-Net baseline) to 84\%. The resulting 3D surface achieves a mean absolute boundary error of less than 0.5 m. These results demonstrate that HOTA can produce accurate, large-area 3D flood maps suitable for rapid disaster response.