Causality and game theory are two influential fields that contribute significantly to decision-making in various domains. Causality defines and models causal relationships in complex policy problems, while game theory provides insights into strategic interactions among stakeholders with competing interests. Integrating these frameworks has led to significant theoretical advancements with the potential to improve decision-making processes. However, practical applications of these developments remain underexplored. To support efforts toward implementation, this paper clarifies key concepts in game theory and causality that are essential to their intersection, particularly within the context of probabilistic graphical models. By rigorously examining these concepts and illustrating them with intuitive, consistent examples, we clarify the required inputs for implementing these models, provide practitioners with insights into their application and selection across different scenarios, and reference existing research that supports their implementation. We hope this work encourages broader adoption of these models in real-world scenarios.