Spiking neural networks (SNNs) offer biologically inspired computation but remain underexplored for continuous regression tasks in scientific machine learning. In this work, we introduce and systematically evaluate Quadratic Integrate-and-Fire (QIF) neurons as an alternative to the conventional Leaky Integrate-and-Fire (LIF) model in both directly trained SNNs and ANN-to-SNN conversion frameworks. The QIF neuron exhibits smooth and differentiable spiking dynamics, enabling gradient-based training and stable optimization within architectures such as multilayer perceptrons (MLPs), Deep Operator Networks (DeepONets), and Physics-Informed Neural Networks (PINNs). Across benchmarks on function approximation, operator learning, and partial differential equation (PDE) solving, QIF-based networks yield smoother, more accurate, and more stable predictions than their LIF counterparts, which suffer from discontinuous time-step responses and jagged activation surfaces. These results position the QIF neuron as a computational bridge between spiking and continuous-valued deep learning, advancing the integration of neuroscience-inspired dynamics into physics-informed and operator-learning frameworks.