With the deepening of poverty alleviation and rural revitalization strategies, improving the rural living environment and enhancing the quality of life have become key priorities. Rural livability is a key indicator for measuring the effectiveness of these efforts. Current measurement approaches face significant limitations, as questionnaire-based methods are difficult to scale, while urban-oriented visual perception methods are poorly suited for rural contexts. In this paper, a rural-specific livability assessment framework was proposed based on drone imagery and multimodal large language models (MLLMs). To comprehensively assess village livability, this study first used a top-down approach to collect large-scale drone imagery of 1,766 villages in 146 counties across China. In terms of the model framework, an efficient image comparison mechanism was developed, incorporating binary search interpolation to determine effective image pairs while reducing comparison iterations. Building on expert knowledge, a chain-of-thought prompting suitable for nationwide rural livability measurement was constructed, considering both living quality and ecological habitability dimensions. This approach enhanced the rationality and reliability of the livability assessment. Finally, this study characterized the spatial heterogeneity of rural livability across China and thoroughly analyzed its influential factors. The results show that: (1) The rural livability in China demonstrates a dual-core-periphery spatial pattern, radiating outward from Sichuan and Zhejiang provinces with declining gradients; (2) Among various influential factors, government fiscal expenditure emerged as the core determinant, with each unit increase corresponding to a 3.9 - 4.9 unit enhancement in livability. The findings provide valuable insights for rural construction policy-making.