Entropic optimal transport (EOT) via Sinkhorn iterations is widely used in modern machine learning, yet GPU solvers remain inefficient at scale. Tensorized implementations suffer quadratic HBM traffic from dense $n\times m$ interactions, while existing online backends avoid storing dense matrices but still rely on generic tiled map-reduce reduction kernels with limited fusion. We present \textbf{FlashSinkhorn}, an IO-aware EOT solver for squared Euclidean cost that rewrites stabilized log-domain Sinkhorn updates as row-wise LogSumExp reductions of biased dot-product scores, the same normalization as transformer attention. This enables FlashAttention-style fusion and tiling: fused Triton kernels stream tiles through on-chip SRAM and update dual potentials in a single pass, substantially reducing HBM IO per iteration while retaining linear-memory operations. We further provide streaming kernels for transport application, enabling scalable first- and second-order optimization. On A100 GPUs, FlashSinkhorn achieves up to $32\times$ forward-pass and $161\times$ end-to-end speedups over state-of-the-art online baselines on point-cloud OT, improves scalability on OT-based downstream tasks. For reproducibility, we release an open-source implementation at https://github.com/ot-triton-lab/ot_triton.