We investigate the role of scatter reducing agents in a continuous wave (CW) near infrared (NIR)reflectance mode imaging setting. We use food-grade dye Tartrazine as a scatter reducing agent to enhance depth sensitivity and weak-absorber detectability in CW diffuse reflectance measurements. We found that reflectance signal was enhanced when the dye was applied on chicken breast phantom. However, we saw reduced reflectance sensitivity when the dye was uniformly dissolved in intralipid phantom which is a commonly used for NIR imaging studies. This shows that the gradient of refractive index modulation created as the dye diffuses from the top layer allows increased reflectance signal sensitivity of optical photons. However, when the scatter reduction is uniform throughout the phantom (like in intralipid phantom), the improved reflectance sensitivity was not observed. Our study points to significant redistribution of photons with scatter modulation with Tartrazine dye. We show significant improvement in sensitivity to signals with reflectance imaging. To elucidate the underlying mechanism of dye induced scatter reduction in tissue, analytical diffusion models and Monte Carlo simulations were employed. Modeling results show the impact of refractive index gradient created due to dye diffusion in enhancing reflectance sensitivity. These findings demonstrate that dye induced scatter reduction provides a practical, low-complexity approach to improving depth sensitivity in CW diffuse reflectance measurements and extend the functional capabilities of CW-NIRS systems for deep-tissue sensing applications. Our preliminary studies shows up to five fold enhancement in signal sensitivity for signals between two and three cm depth.