Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:The Multi-Objective Shortest Path Problem, typically posed on a graph, determines a set of paths from a start vertex to a destination vertex while optimizing multiple objectives. In general, there does not exist a single solution path that can simultaneously optimize all the objectives and the problem thus seeks to find a set of so-called Pareto-optimal solutions. To address this problem, several Multi-Objective A* (MOA*) algorithms were recently developed to quickly compute solutions with quality guarantees. However, these MOA* algorithms often suffer from high memory usage, especially when the branching factor (i.e., the number of neighbors of any vertex) of the graph is large. This work thus aims at reducing the high memory consumption of MOA* with little increase in the runtime. In this paper, we first extend the notion of "partial expansion" (PE) from single-objective to multi-objective and then fuse this new PE technique with EMOA*, a recent runtime efficient MOA* algorithm. Furthermore, the resulting algorithm PE-EMOA* can balance between runtime and memory efficiency by tuning a user-defined hyper-parameter.