Efficient medium access control (MAC) is critical for enabling low-latency and reliable communication in industrial Machine-to-Machine (M2M) net-works, where timely data delivery is essential for seamless operation. The presence of multi-priority data in high-risk industrial environments further adds to the challenges. The development of tens of MAC schemes over the past decade often makes it a tough choice to deploy the most efficient solu-tion. Therefore, a comprehensive cross-comparison of major MAC protocols across a range of performance parameters appears necessary to gain deeper insights into their relative strengths and limitations. This paper presents a comparison of Contention window-based MAC scheme BoP-MAC with a fragmentation based, FROG-MAC; both protocols focus on reducing the delay for higher priority traffic, while taking a diverse approach. BoP-MAC assigns a differentiated back-off value to the multi-priority traffic, whereas FROG-MAC enables early transmission of higher-priority packets by fragmenting lower-priority traffic. Simulations were performed on Contiki by varying the number of nodes for two traffic priorities. It has been shown that when work-ing with multi-priority heterogenous data in the industrial environment, FROG-MAC results better both in terms of delay and throughput.