Previous work has shown that the addition of haptic feedback to the hands can improve awareness of tool-tissue interactions and enhance performance of teleoperated tasks in robot-assisted minimally invasive surgery. However, hand-based haptic feedback occludes direct interaction with the manipulanda of surgeon console in teleoperated surgical robots. We propose relocating haptic feedback to the wrist using a wearable haptic device so that haptic feedback mechanisms do not need to be integrated into the manipulanda. However, it is unknown if such feedback will be effective, given that it is not co-located with the finger movements used for manipulation. To test if relocated haptic feedback improves force application during teleoperated tasks using da Vinci Research Kit (dVRK) surgical robot, participants learned to palpate a phantom tissue to desired forces. A soft pneumatic wrist-worn haptic device with an anchoring system renders tool-tissue interaction forces to the wrist of the user. Participants performed the palpation task with and without wrist-worn haptic feedback and were evaluated for the accuracy of applied forces. Participants demonstrated statistically significant lower force error when wrist-worn haptic feedback was provided. Participants also performed the palpation task with longer movement times when provided wrist-worn haptic feedback, indicating that the haptic feedback may have caused participants to operate at a different point in the speed-accuracy tradeoff curve.