This research introduces a novel psychometric method for analyzing textual data using large language models. By leveraging contextual embeddings to create contextual scores, we transform textual data into response data suitable for psychometric analysis. Treating documents as individuals and words as items, this approach provides a natural psychometric interpretation under the assumption that certain keywords, whose contextual meanings vary significantly across documents, can effectively differentiate documents within a corpus. The modeling process comprises two stages: obtaining contextual scores and performing psychometric analysis. In the first stage, we utilize natural language processing techniques and encoder based transformer models to identify common keywords and generate contextual scores. In the second stage, we employ various types of factor analysis, including exploratory and bifactor models, to extract and define latent factors, determine factor correlations, and identify the most significant words associated with each factor. Applied to the Wiki STEM corpus, our experimental results demonstrate the method's potential to uncover latent knowledge dimensions and patterns within textual data. This approach not only enhances the psychometric analysis of textual data but also holds promise for applications in fields rich in textual information, such as education, psychology, and law.