In multi-robot systems (MRS), cooperative localization is a crucial task for enhancing system robustness and scalability, especially in GPS-denied or communication-limited environments. However, adversarial attacks, such as sensor manipulation, and communication jamming, pose significant challenges to the performance of traditional localization methods. In this paper, we propose a novel distributed fault-tolerant cooperative localization framework to enhance resilience against sensor and communication disruptions in adversarial environments. We introduce an adaptive event-triggered communication strategy that dynamically adjusts communication thresholds based on real-time sensing and communication quality. This strategy ensures optimal performance even in the presence of sensor degradation or communication failure. Furthermore, we conduct a rigorous analysis of the convergence and stability properties of the proposed algorithm, demonstrating its resilience against bounded adversarial zones and maintaining accurate state estimation. Robotarium-based experiment results show that our proposed algorithm significantly outperforms traditional methods in terms of localization accuracy and communication efficiency, particularly in adversarial settings. Our approach offers improved scalability, reliability, and fault tolerance for MRS, making it suitable for large-scale deployments in real-world, challenging environments.