An immersive acoustic experience enabled by spatial audio is just as crucial as the visual aspect in creating realistic virtual environments. However, existing methods for room impulse response estimation rely either on data-demanding learning-based models or computationally expensive physics-based modeling. In this work, we introduce Audio-Visual Differentiable Room Acoustic Rendering (AV-DAR), a framework that leverages visual cues extracted from multi-view images and acoustic beam tracing for physics-based room acoustic rendering. Experiments across six real-world environments from two datasets demonstrate that our multimodal, physics-based approach is efficient, interpretable, and accurate, significantly outperforming a series of prior methods. Notably, on the Real Acoustic Field dataset, AV-DAR achieves comparable performance to models trained on 10 times more data while delivering relative gains ranging from 16.6% to 50.9% when trained at the same scale.