Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!
Abstract:We present the DexWrist, a compliant robotic wrist designed to advance robotic manipulation in highly-constrained environments, enable dynamic tasks, and speed up data collection. DexWrist is designed to be close to the functional capabilities of the human wrist and achieves mechanical compliance and a greater workspace as compared to existing robotic wrist designs. The DexWrist can supercharge policy learning by (i) enabling faster teleoperation and therefore making data collection more scalable; (ii) completing tasks in fewer steps which reduces trajectory lengths and therefore can ease policy learning; (iii) DexWrist is designed to be torque transparent with easily simulatable kinematics for simulated data collection; and (iv) most importantly expands the workspace of manipulation for approaching highly cluttered scenes and tasks. More details about the wrist can be found at: dexwrist.csail.mit.edu.