Progress notes are among the most clinically meaningful artifacts in an Electronic Health Record (EHR), offering temporally grounded insights into a patient's evolving condition, treatments, and care decisions. Despite their importance, they are severely underrepresented in large-scale EHR datasets. For instance, in the widely used Medical Information Mart for Intensive Care III (MIMIC-III) dataset, only about $8.56\%$ of hospital visits include progress notes, leaving gaps in longitudinal patient narratives. In contrast, the dataset contains a diverse array of other note types, each capturing different aspects of care. We present DENSE (Documenting Evolving Progress Notes from Scattered Evidence), a system designed to align with clinical documentation workflows by simulating how physicians reference past encounters while drafting progress notes. The system introduces a fine-grained note categorization and a temporal alignment mechanism that organizes heterogeneous notes across visits into structured, chronological inputs. At its core, DENSE leverages a clinically informed retrieval strategy to identify temporally and semantically relevant content from both current and prior visits. This retrieved evidence is used to prompt a large language model (LLM) to generate clinically coherent and temporally aware progress notes. We evaluate DENSE on a curated cohort of patients with multiple visits and complete progress note documentation. The generated notes demonstrate strong longitudinal fidelity, achieving a temporal alignment ratio of $1.089$, surpassing the continuity observed in original notes. By restoring narrative coherence across fragmented documentation, our system supports improved downstream tasks such as summarization, predictive modeling, and clinical decision support, offering a scalable solution for LLM-driven note synthesis in real-world healthcare settings.