Advancements in digitization have enabled two sided manufacturing-as-a-service (MaaS) marketplaces which has significantly reduced product development time for designers. These platforms provide designers with access to manufacturing resources through a network of suppliers and have instant order placement capabilities. Two key decision making levers are typically used to optimize the operations of these marketplaces: pricing and matching. The existing marketplaces operate in a centralized structure where they have complete control over decision making. However, a decentralized organization of the platform enables transparency of information across clients and suppliers. This dissertation focuses on developing tools for decision making enabling decentralization in MaaS marketplaces. In pricing mechanisms, a data driven method is introduced which enables small service providers to price services based on specific attributes of the services offered. A data mining method recommends a network based price to a supplier based on its attributes and the attributes of other suppliers on the platform. Three different approaches are considered for matching mechanisms. First, a reverse auction mechanism is introduced where designers bid for manufacturing services and the mechanism chooses a supplier which can match the bid requirements and stated price. The second approach uses mechanism design and mathematical programming to develop a stable matching mechanism for matching orders to suppliers based on their preferences. Empirical simulations are used to test the mechanisms in a simulated 3D printing marketplace and to evaluate the impact of stability on its performance. The third approach considers the matching problem in a dynamic and stochastic environment where demand (orders) and supply (supplier capacities) arrive over time and matching is performed online.