To fully understand, analyze, and determine the behavior of dynamical systems, it is crucial to identify their intrinsic modal coordinates. In nonlinear dynamical systems, this task is challenging as the modal transformation based on the superposition principle that works well for linear systems is no longer applicable. To understand the nonlinear dynamics of a system, one of the main approaches is to use the framework of Nonlinear Normal Modes (NNMs) which attempts to provide an in-depth representation. In this research, we examine the effectiveness of NNMs in characterizing nonlinear dynamical systems. Given the difficulty of obtaining closed-form models or equations for these real-world systems, we present a data-driven framework that combines physics and deep learning to the nonlinear modal transformation function of NNMs from response data only. We assess the framework's ability to represent the system by analyzing its mode decomposition, reconstruction, and prediction accuracy using a nonlinear beam as an example. Initially, we perform numerical simulations on a nonlinear beam at different energy levels in both linear and nonlinear scenarios. Afterward, using experimental vibration data of a nonlinear beam, we isolate the first two NNMs. It is observed that the NNMs' frequency values increase as the excitation level of energy increases, and the configuration plots become more twisted (more nonlinear). In the experiment, the framework successfully decomposed the first two NNMs of the nonlinear beam using experimental free vibration data and captured the dynamics of the structure via prediction and reconstruction of some physical points of the beam.