Multimodal misinformation increasingly mixes realistic im-age edits with fluent but misleading text, producing persuasive posts that are difficult to verify. Existing systems usually rely on a single evidence source. Content-based detectors identify local inconsistencies within an image and its caption but cannot determine global factual truth. Retrieval-based fact-checkers reason over external evidence but treat inputs as coarse claims and often miss subtle visual or textual manipulations. This separation creates failure cases where internally consistent fabrications bypass manipulation detectors and fact-checkers verify claims that contain pixel-level or token-level corruption. We present D-SECURE, a framework that combines internal manipulation detection with external evidence-based reasoning for news-style posts. D-SECURE integrates the HAMMER manipulation detector with the DEFAME retrieval pipeline. DEFAME performs broad verification, and HAMMER analyses residual or uncertain cases that may contain fine-grained edits. Experiments on DGM4 and ClaimReview samples highlight the complementary strengths of both systems and motivate their fusion. We provide a unified, explainable report that incorporates manipulation cues and external evidence.