Accurate recognition of personally identifiable information (PII) is central to automated text anonymization. This paper investigates the effectiveness of cross-domain model transfer, multi-domain data fusion, and sample-efficient learning for PII recognition. Using annotated corpora from healthcare (I2B2), legal (TAB), and biography (Wikipedia), we evaluate models across four dimensions: in-domain performance, cross-domain transferability, fusion, and few-shot learning. Results show legal-domain data transfers well to biographical texts, while medical domains resist incoming transfer. Fusion benefits are domain-specific, and high-quality recognition is achievable with only 10% of training data in low-specialization domains.