Modeling the continuous--time dynamics of probability distributions from time--dependent data samples is a fundamental problem in many fields, including digital health. The aim is to analyze how the distribution of a biomarker, such as glucose, evolves over time and how these changes may reflect the progression of chronic diseases such as diabetes. In this paper, we propose a novel probabilistic model based on a mixture of Gaussian distributions to capture how samples from a continuous-time stochastic process evolve over the time. To model potential distribution shifts over time, we introduce a time-dependent function parameterized by a Neural Ordinary Differential Equation (Neural ODE) and estimate it non--parametrically using the Maximum Mean Discrepancy (MMD). The proposed model is highly interpretable, detects subtle temporal shifts, and remains computationally efficient. Through simulation studies, we show that it performs competitively in terms of estimation accuracy against state-of-the-art, less interpretable methods such as normalized gradient--flows and non--parameteric kernel density estimators. Finally, we demonstrate the utility of our method on digital clinical--trial data, showing how the interventions alters the time-dependent distribution of glucose levels and enabling a rigorous comparison of control and treatment groups from novel mathematical and clinical perspectives.