Reliable uncertainty estimation is critical for deploying neural networks (NNs) in real-world applications. While existing calibration techniques often rely on post-hoc adjustments or coarse-grained binning methods, they remain limited in scalability, differentiability, and generalization across domains. In this work, we introduce CLUE (Calibration via Learning Uncertainty-Error Alignment), a novel approach that explicitly aligns predicted uncertainty with observed error during training, grounded in the principle that well-calibrated models should produce uncertainty estimates that match their empirical loss. CLUE adopts a novel loss function that jointly optimizes predictive performance and calibration, using summary statistics of uncertainty and loss as proxies. The proposed method is fully differentiable, domain-agnostic, and compatible with standard training pipelines. Through extensive experiments on vision, regression, and language modeling tasks, including out-of-distribution and domain-shift scenarios, we demonstrate that CLUE achieves superior calibration quality and competitive predictive performance with respect to state-of-the-art approaches without imposing significant computational overhead.