Large language models (LLMs) demonstrate considerable potential in various natural language tasks but face significant challenges in mathematical reasoning, particularly in executing precise, multi-step logic. However, current evaluation frameworks judge their performance solely based on accuracy, which only accounts for the final answer. This study explores these pitfalls by employing a novel evaluation framework. We propose an evaluation metric called the MAPLE score, which holistically quantifies reasoning misalignment by integrating error rates, redundancy, and validity.