Induced magnetic field (IMF)-based localization offers a robust alternative to wave-based positioning technologies due to its resilience to non-line-of-sight conditions, environmental dynamics, and wireless interference. However, existing magnetic localization systems typically rely on analytical field inversion, manual calibration, or environment-specific fingerprinting, limiting their scalability and transferability. This paper presents a data-driven IMF localization framework that directly maps induced magnetic field measurements to spatial coordinates using supervised learning, eliminating explicit environment-specific calibration. By replacing explicit field modeling with learning-based inference, the proposed approach captures nonlinear field interactions and environmental effects. An orientation-invariant feature representation enables rotation-independent deployment. The system is evaluated across multiple indoor environments and an outdoor deployment. Benchmarking against classical and deep learning baselines shows that a Random Forest regressor achieves sub-20 cm accuracy in 2D and sub-30 cm in 3D localization. Cross-environment validation demonstrates that models trained indoors generalize to outdoor environments without retraining. We further analyze scalability by varying transmitter spacing, showing that coverage and accuracy can be balanced through deployment density. Overall, this work demonstrates that data-driven IMF localization is a scalable and transferable solution for real-world positioning.