The widely used retrieve-and-rerank pipeline faces two critical limitations: they are constrained by the initial retrieval quality of the top-k documents, and the growing computational demands of LLM-based rerankers restrict the number of documents that can be effectively processed. We introduce Reranker-Guided-Search (RGS), a novel approach that bypasses these limitations by directly retrieving documents according to reranker preferences rather than following the traditional sequential reranking method. Our method uses a greedy search on proximity graphs generated by approximate nearest neighbor algorithms, strategically prioritizing promising documents for reranking based on document similarity. Experimental results demonstrate substantial performance improvements across multiple benchmarks: 3.5 points on BRIGHT, 2.9 on FollowIR, and 5.1 on M-BEIR, all within a constrained reranker budget of 100 documents. Our analysis suggests that, given a fixed pair of embedding and reranker models, strategically selecting documents to rerank can significantly improve retrieval accuracy under limited reranker budget.