Hybrid neural ordinary differential equations (neural ODEs) integrate mechanistic models with neural ODEs, offering strong inductive bias and flexibility, and are particularly advantageous in data-scarce healthcare settings. However, excessive latent states and interactions from mechanistic models can lead to training inefficiency and over-fitting, limiting practical effectiveness of hybrid neural ODEs. In response, we propose a new hybrid pipeline for automatic state selection and structure optimization in mechanistic neural ODEs, combining domain-informed graph modifications with data-driven regularization to sparsify the model for improving predictive performance and stability while retaining mechanistic plausibility. Experiments on synthetic and real-world data show improved predictive performance and robustness with desired sparsity, establishing an effective solution for hybrid model reduction in healthcare applications.