Large language models (LLMs) are increasingly deployed in real-world systems, yet they can produce toxic or biased outputs that undermine safety and trust. Post-hoc model repair provides a practical remedy, but the high cost of parameter updates motivates selective use of repair data. Despite extensive prior work on data selection for model training, it remains unclear which sampling criteria are most effective and efficient when applied specifically to behavioral repair of large generative models. Our study presents a systematic analysis of sample prioritization strategies for LLM repair. We evaluate five representative selection methods, including random sampling, K-Center, gradient-norm-based selection(GraNd), stratified coverage (CCS), and a Semantic-Aware Prioritized Sampling (SAPS) approach we proposed. Repair effectiveness and trade-offs are assessed through toxicity reduction, perplexity on WikiText-2 and LAMBADA, and three composite metrics: the Repair Proximity Score (RPS), the Overall Performance Score (OPS), and the Repair Efficiency Score (RES). Experimental results show that SAPS achieves the best balance between detoxification, utility preservation, and efficiency, delivering comparable or superior repair outcomes with substantially less data. Random sampling remains effective for large or robust models, while high-overhead methods such as CCS and GraNd provide limited benefit. The optimal data proportion depends on model scale and repair method, indicating that sample selection should be regarded as a tunable component of repair pipelines. Overall, these findings establish selection-based repair as an efficient and scalable paradigm for maintaining LLM reliability.