Reinforcement learning has become the primary paradigm for aligning large language models (LLMs) on complex reasoning tasks, with group relative policy optimization (GRPO) widely used in large-scale post-training. However, GRPO faces structural limitations in reasoning-heavy settings: sequence-level advantage normalization introduces systematic length bias, penalties for low-quality trajectories are diluted, and the scalar objective discards rich pairwise preference information embedded in within-group reward rankings. As a result, valuable supervision from costly rollouts remains underutilized. We propose AMIR-GRPO, which augments GRPO with an implicit DPO-style contrastive regularizer constructed directly from intra-group reward rankings, requiring no additional annotations. This mechanism amplifies suppression of low-reward trajectories, attenuates response-level length bias, and transforms each rollout group into a denser set of supervision constraints. Across multiple mathematical reasoning benchmarks, AMIR-GRPO consistently outperforms strong GRPO baselines, yields clearer separation between correct and incorrect reasoning chains, and delivers broader coverage gains beyond the subset of instances solved by standard GRPO.