In complex clinical decision-making, clinicians must often track a variety of competing metrics defined by aim (ideal) and limit (strict) thresholds. Sifting through these high-dimensional tradeoffs to infer the optimal patient-specific strategy is cognitively demanding and historically prone to variability. In this paper, we address this challenge within the context of High-Dose-Rate (HDR) brachytherapy for cervical cancer, where planning requires strictly managing radiation hot spots while balancing tumor coverage against organ sparing. We present ALMo (Aim-Limit-defined Multi-Objective system), an interactive decision support system designed to infer and operationalize clinician intent. ALMo employs a novel optimization framework that minimizes manual input through automated parameter setup and enables flexible control over toxicity risks. Crucially, the system allows clinicians to navigate the Pareto surface of dosimetric tradeoffs by directly manipulating intuitive aim and limit values. In a retrospective evaluation of 25 clinical cases, ALMo generated treatment plans that consistently met or exceeded manual planning quality, with 65% of cases demonstrating dosimetric improvements. Furthermore, the system significantly enhanced efficiency, reducing average planning time to approximately 17 minutes, compared to the conventional 30-60 minutes. While validated in brachytherapy, ALMo demonstrates a generalized framework for streamlining interaction in multi-criteria clinical decision-making.