Unmanned aerial vehicles are rapidly transforming multiple applications, from agricultural and infrastructure monitoring to logistics and defense. Introducing greater autonomy to these systems can simultaneously make them more effective as well as reliable. Thus, the ability to rapidly engineer and deploy autonomous aerial systems has become of strategic importance. In the 2010s, a combination of high-performance compute, data, and open-source software led to the current deep learning and AI boom, unlocking decades of prior theoretical work. Robotics is on the cusp of a similar transformation. However, physical AI faces unique hurdles, often combined under the umbrella term "simulation-to-reality gap". These span from modeling shortcomings to the complexity of vertically integrating the highly heterogeneous hardware and software systems typically found in field robots. To address the latter, we introduce aerial-autonomy-stack, an open-source, end-to-end framework designed to streamline the pipeline from (GPU-accelerated) perception to (flight controller-based) action. Our stack allows the development of aerial autonomy using ROS2 and provides a common interface for two of the most popular autopilots: PX4 and ArduPilot. We show that it supports over 20x faster-than-real-time, end-to-end simulation of a complete development and deployment stack -- including edge compute and networking -- significantly compressing the build-test-release cycle of perception-based autonomy.