Online reinforcement learning (RL) excels in complex, safety-critical domains, yet it faces challenges such as sample inefficiency, training instability, and a lack of interpretability. Data attribution offers a principled way to trace model behavior back to individual training samples. However, in online RL, each training sample not only drives policy updates but also influences future data collection, violating the fixed dataset assumption in existing attribution methods. In this paper, we initiate the study of data attribution for online RL, focusing on the widely used Proximal Policy Optimization (PPO) algorithm. We start by establishing a local attribution framework, interpreting model checkpoints with respect to the records in the recent training buffer. We design two target functions, capturing agent action and cumulative return respectively, and measure each record's contribution through gradient similarity between its training loss and these targets. We demonstrate the power of this framework through three concrete applications: diagnosis of learning, temporal analysis of behavior formation, and targeted intervention during training. Leveraging this framework, we further propose an algorithm, iterative influence-based filtering (IIF), for online RL training that iteratively performs experience filtering to refine policy updates. Across standard RL benchmarks (classic control, navigation, locomotion) to RLHF for large language models, IIF reduces sample complexity, speeds up training, and achieves higher returns. Overall, these results advance interpretability, efficiency, and effectiveness of online RL.