Neural architecture search (NAS) automates neural network design, improving efficiency over manual approaches. However, efficiently discovering high-performance neural network architectures that simultaneously optimize multiple objectives remains a significant challenge in NAS. Existing methods often suffer from limited population diversity and inadequate exploration of the search space, particularly in regions with extreme complexity values. To address these challenges, we propose MOEA-BUS, an innovative multi-objective evolutionary algorithm based on bi-population with uniform sampling for neural architecture search, aimed at simultaneously optimizing both accuracy and network complexity. In MOEA-BUS, a novel uniform sampling method is proposed to initialize the population, ensuring that architectures are distributed uniformly across the objective space. Furthermore, to enhance exploration, we deploy a bi-population framework where two populations evolve synergistically, facilitating comprehensive search space coverage. Experiments on CIFAR-10 and ImageNet demonstrate MOEA-BUS's superiority, achieving top-1 accuracies of 98.39% on CIFAR-10, and 80.03% on ImageNet. Notably, it achieves 78.28% accuracy on ImageNet with only 446M MAdds. Ablation studies confirm that both uniform sampling and bi-population mechanisms enhance population diversity and performance. Additionally, in terms of the Kendall's tau coefficient, the SVM achieves an improvement of at least 0.035 compared to the other three commonly used machine learning models, and uniform sampling provided an enhancement of approximately 0.07.