We consider the problem of heteroskedastic generalized linear bandits (GLBs) with adversarial corruptions, which subsumes various stochastic contextual bandit settings, including heteroskedastic linear bandits and logistic/Poisson bandits. We propose HCW-GLB-OMD, which consists of two components: an online mirror descent (OMD)-based estimator and Hessian-based confidence weights to achieve corruption robustness. This is computationally efficient in that it only requires ${O}(1)$ space and time complexity per iteration. Under the self-concordance assumption on the link function, we show a regret bound of $\tilde{O}\left( d \sqrt{\sum_t g(τ_t) \dotμ_{t,\star}} + d^2 g_{\max} κ+ d κC \right)$, where $\dotμ_{t,\star}$ is the slope of $μ$ around the optimal arm at time $t$, $g(τ_t)$'s are potentially exogenously time-varying dispersions (e.g., $g(τ_t) = σ_t^2$ for heteroskedastic linear bandits, $g(τ_t) = 1$ for Bernoulli and Poisson), $g_{\max} = \max_{t \in [T]} g(τ_t)$ is the maximum dispersion, and $C \geq 0$ is the total corruption budget of the adversary. We complement this with a lower bound of $\tildeΩ(d \sqrt{\sum_t g(τ_t) \dotμ_{t,\star}} + d C)$, unifying previous problem-specific lower bounds. Thus, our algorithm achieves, up to a $κ$-factor in the corruption term, instance-wise minimax optimality simultaneously across various instances of heteroskedastic GLBs with adversarial corruptions.