Abstract:The COVID-19 pandemic's severe impact highlighted the need for accurate, timely hospitalization forecasting to support effective healthcare planning. However, most forecasting models struggled, especially during variant surges, when they were needed most. This study introduces a novel Long Short-Term Memory (LSTM) framework for forecasting daily state-level incident hospitalizations in the United States. We present a spatiotemporal feature, Social Proximity to Hospitalizations (SPH), derived from Facebook's Social Connectedness Index to improve forecasts. SPH serves as a proxy for interstate population interaction, capturing transmission dynamics across space and time. Our parallel LSTM architecture captures both short- and long-term temporal dependencies, and our multi-horizon ensembling strategy balances consistency and forecasting error. Evaluation against COVID-19 Forecast Hub ensemble models during the Delta and Omicron surges reveals superiority of our model. On average, our model surpasses the ensemble by 27, 42, 54, and 69 hospitalizations per state on the $7^{th}$, $14^{th}$, $21^{st}$, and $28^{th}$ forecast days, respectively, during the Omicron surge. Data-ablation experiments confirm SPH's predictive power, highlighting its effectiveness in enhancing forecasting models. This research not only advances hospitalization forecasting but also underscores the significance of spatiotemporal features, such as SPH, in refining predictive performance in modeling the complex dynamics of infectious disease spread.
Abstract:Deep learning models have demonstrated success in geospatial applications, yet quantifying the role of geolocation information in enhancing model performance and geographic generalizability remains underexplored. A new generation of location encoders have emerged with the goal of capturing attributes present at any given location for downstream use in predictive modeling. Being a nascent area of research, their evaluation has remained largely limited to static tasks such as species distributions or average temperature mapping. In this paper, we discuss and quantify the impact of incorporating geolocation into deep learning for a real-world application domain that is characteristically dynamic (with fast temporal change) and spatially heterogeneous at high resolutions: estimating surface-level daily PM2.5 levels using remotely sensed and ground-level data. We build on a recently published deep learning-based PM2.5 estimation model that achieves state-of-the-art performance on data observed in the contiguous United States. We examine three approaches for incorporating geolocation: excluding geolocation as a baseline, using raw geographic coordinates, and leveraging pretrained location encoders. We evaluate each approach under within-region (WR) and out-of-region (OoR) evaluation scenarios. Aggregate performance metrics indicate that while na\"ive incorporation of raw geographic coordinates improves within-region performance by retaining the interpolative value of geographic location, it can hinder generalizability across regions. In contrast, pretrained location encoders like GeoCLIP enhance predictive performance and geographic generalizability for both WR and OoR scenarios. However, qualitative analysis reveals artifact patterns caused by high-degree basis functions and sparse upstream samples in certain areas, and ablation results indicate varying performance among location encoders...