Abstract:Diffusion has emerged as a powerful framework for generative modeling, achieving remarkable success in applications such as image and audio synthesis. Enlightened by this progress, we propose a novel diffusion-based approach for symbolic regression. We construct a random mask-based diffusion and denoising process to generate diverse and high-quality equations. We integrate this generative processes with a token-wise Group Relative Policy Optimization (GRPO) method to conduct efficient reinforcement learning on the given measurement dataset. In addition, we introduce a long short-term risk-seeking policy to expand the pool of top-performing candidates, further enhancing performance. Extensive experiments and ablation studies have demonstrated the effectiveness of our approach.
Abstract:This paper proposes a novel deep symbolic regression approach to enhance the robustness and interpretability of data-driven mathematical expression discovery. Despite the success of the state-of-the-art method, DSR, it is built on recurrent neural networks, purely guided by data fitness, and potentially meet tail barriers, which can zero out the policy gradient and cause inefficient model updates. To overcome these limitations, we use transformers in conjunction with breadth-first-search to improve the learning performance. We use Bayesian information criterion (BIC) as the reward function to explicitly account for the expression complexity and optimize the trade-off between interpretability and data fitness. We propose a modified risk-seeking policy that not only ensures the unbiasness of the gradient, but also removes the tail barriers, thus ensuring effective updates from top performers. Through a series of benchmarks and systematic experiments, we demonstrate the advantages of our approach.