Abstract:Artistic design such as poster design often demands rapid yet precise modification of textual content while preserving visual harmony and typographic intent, especially across diverse font styles. Although modern image editing models have grown increasingly powerful, they still fall short in fine-grained, font-aware text manipulation, limiting their utility in professional design workflows such as poster editing. To address this issue, we present SkyReels-Text, a novel font-controllable framework for precise poster text editing. Our method enables simultaneous editing of multiple text regions, each rendered in distinct typographic styles, while preserving the visual appearance of non-edited regions. Notably, our model requires neither font labels nor fine-tuning during inference: users can simply provide cropped glyph patches corresponding to their desired typography, even if the font is not included in any standard library. Extensive experiments on multiple datasets, including handwrittent text benchmarks, SkyReels-Text achieves state-of-the-art performance in both text fidelity and visual realism, offering unprecedented control over font families, and stylistic nuances. This work bridges the gap between general-purpose image editing and professional-grade typographic design.




Abstract:Image editing approaches with diffusion models have been rapidly developed, yet their applicability are subject to requirements such as specific editing types (e.g., foreground or background object editing, style transfer), multiple conditions (e.g., mask, sketch, caption), and time consuming fine-tuning of diffusion models. For alleviating these limitations and realizing efficient real image editing, we propose a novel editing technique that only requires an input image and target text for various editing types including non-rigid edits without fine-tuning diffusion model. Our method contains three novelties:(I) Target-text Inversion Schedule (TTIS) is designed to fine-tune the input target text embedding to achieve fast image reconstruction without image caption and acceleration of convergence.(II) Progressive Transition Scheme applies progressive linear interpolation between target text embedding and its fine-tuned version to generate transition embedding for maintaining non-rigid editing capability.(III) Balanced Attention Module (BAM) balances the tradeoff between textual description and image semantics.By the means of combining self-attention map from reconstruction process and cross-attention map from transition process, the guidance of target text embeddings in diffusion process is optimized.In order to demonstrate editing capability, effectiveness and efficiency of the proposed BARET, we have conducted extensive qualitative and quantitative experiments. Moreover, results derived from user study and ablation study further prove the superiority over other methods.