Abstract:Applying AI foundation models directly to geospatial datasets remains challenging due to their limited ability to represent and reason with geographical entities, specifically vector-based geometries and natural language descriptions of complex spatial relations. To address these issues, we investigate the extent to which a well-known-text (WKT) representation of geometries and their spatial relations (e.g., topological predicates) are preserved during spatial reasoning when the geospatial vector data are passed to large language models (LLMs) including GPT-3.5-turbo, GPT-4, and DeepSeek-R1-14B. Our workflow employs three distinct approaches to complete the spatial reasoning tasks for comparison, i.e., geometry embedding-based, prompt engineering-based, and everyday language-based evaluation. Our experiment results demonstrate that both the embedding-based and prompt engineering-based approaches to geospatial question-answering tasks with GPT models can achieve an accuracy of over 0.6 on average for the identification of topological spatial relations between two geometries. Among the evaluated models, GPT-4 with few-shot prompting achieved the highest performance with over 0.66 accuracy on topological spatial relation inference. Additionally, GPT-based reasoner is capable of properly comprehending inverse topological spatial relations and including an LLM-generated geometry can enhance the effectiveness for geographic entity retrieval. GPT-4 also exhibits the ability to translate certain vernacular descriptions about places into formal topological relations, and adding the geometry-type or place-type context in prompts may improve inference accuracy, but it varies by instance. The performance of these spatial reasoning tasks offers valuable insights for the refinement of LLMs with geographical knowledge towards the development of geo-foundation models capable of geospatial reasoning.
Abstract:This research focuses on assessing the ability of large language models (LLMs) in representing geometries and their spatial relations. We utilize LLMs including GPT-2 and BERT to encode the well-known text (WKT) format of geometries and then feed their embeddings into classifiers and regressors to evaluate the effectiveness of the LLMs-generated embeddings for geometric attributes. The experiments demonstrate that while the LLMs-generated embeddings can preserve geometry types and capture some spatial relations (up to 73% accuracy), challenges remain in estimating numeric values and retrieving spatially related objects. This research highlights the need for improvement in terms of capturing the nuances and complexities of the underlying geospatial data and integrating domain knowledge to support various GeoAI applications using foundation models.