Abstract:Ensuring accessibility for individuals with cognitive impairments is essential for autonomy, self-determination, and full citizenship. However, manual Easy-to-Read (ETR) text adaptations are slow, costly, and difficult to scale, limiting access to crucial information in healthcare, education, and civic life. AI-driven ETR generation offers a scalable solution but faces key challenges, including dataset scarcity, domain adaptation, and balancing lightweight learning of Large Language Models (LLMs). In this paper, we introduce ETR-fr, the first dataset for ETR text generation fully compliant with European ETR guidelines. We implement parameter-efficient fine-tuning on PLMs and LLMs to establish generative baselines. To ensure high-quality and accessible outputs, we introduce an evaluation framework based on automatic metrics supplemented by human assessments. The latter is conducted using a 36-question evaluation form that is aligned with the guidelines. Overall results show that PLMs perform comparably to LLMs and adapt effectively to out-of-domain texts.
Abstract:Simplifying complex texts is essential for ensuring equitable access to information, especially for individuals with cognitive impairments. The Easy-to-Read (ETR) initiative offers a framework for making content accessible to the neurodivergent population, but the manual creation of such texts remains time-consuming and resource-intensive. In this work, we investigate the potential of large language models (LLMs) to automate the generation of ETR content. To address the scarcity of aligned corpora and the specificity of ETR constraints, we propose a multi-task learning (MTL) approach that trains models jointly on text summarization, text simplification, and ETR generation. We explore two different strategies: multi-task retrieval-augmented generation (RAG) for in-context learning, and MTL-LoRA for parameter-efficient fine-tuning. Our experiments with Mistral-7B and LLaMA-3-8B, based on ETR-fr, a new high-quality dataset, demonstrate the benefits of multi-task setups over single-task baselines across all configurations. Moreover, results show that the RAG-based strategy enables generalization in out-of-domain settings, while MTL-LoRA outperforms all learning strategies within in-domain configurations.
Abstract:Basic patterns are the source of a wide range of more or less complex geometric structures. We will exploit such patterns to develop new efficient visual markers. Besides being projective invariants, the proposed markers allow producing rich panel of unique identifiers, highly required for resource-intensive navigation and augmented reality applications. The spiral topology of our markers permits the validation of an accurate identification scheme, which is based on level set methods. The robustness of the markers against acquisition and geometric distortions is validated by extensive experimental tests.
Abstract:This short paper introduces a recently patented line based numbering system. The last allows a best concordance with decimal digits values, and open up new opportunities, which are not possible with the classical decimal numeration system. Proposed OILU symbolic allows generating a new type of number series, based on multi facets numbers splitting process. On the other hand, this new symbolic is used in the development of new visual markers, highly required in augmented reality and UAV's navigation applications.