Abstract:The impact of the environment on graphene's properties such as strain, charge density, and dielectric environment can be evaluated by Raman spectroscopy. These environmental interactions are not trivial to determine, since they affect the spectra in overlapping ways. Data preprocessing such as background subtraction and peak fitting is typically used. Moreover, collected spectroscopic data vary due to different experimental setups and environments. Such variations, artifacts, and environmental differences pose a challenge in accurate spectral analysis. In this work, we developed a deep learning model to overcome the effects of such variations and classify graphene Raman spectra according to different charge densities and dielectric environments. We consider two approaches: deep learning models and machine learning algorithms to classify spectra with slightly different charge density or dielectric environment. These two approaches show similar success rates for high Signal-to-Noise data. However, deep learning models are less sensitive to noise. To improve the accuracy and generalization of all models, we use data augmentation through additive noise and peak shifting. We demonstrated the spectra classification with 99% accuracy using a convolutional neural net (CNN) model. The CNN model is able to classify Raman spectra of graphene with different charge doping levels and even subtle variation in the spectra between graphene on SiO$_2$ and graphene on silanized SiO$_2$. Our approach has the potential for fast and reliable estimation of graphene doping levels and dielectric environments. The proposed model paves the way for achieving efficient analytical tools to evaluate the properties of graphene.
Abstract:Facial emotion recognition (FER) is significant for human-computer interaction such as clinical practice and behavioral description. Accurate and robust FER by computer models remains challenging due to the heterogeneity of human faces and variations in images such as different facial pose and lighting. Among all techniques for FER, deep learning models, especially Convolutional Neural Networks (CNNs) have shown great potential due to their powerful automatic feature extraction and computational efficiency. In this work, we achieve the highest single-network classification accuracy on the FER2013 dataset. We adopt the VGGNet architecture, rigorously fine-tune its hyperparameters, and experiment with various optimization methods. To our best knowledge, our model achieves state-of-the-art single-network accuracy of 73.28 % on FER2013 without using extra training data.