Abstract:Commonsense reasoning in multimodal contexts remains a foundational challenge in artificial intelligence. We introduce Multimodal UNcommonsense(MUN), a benchmark designed to evaluate models' ability to handle scenarios that deviate from typical visual or contextual expectations. MUN pairs visual scenes with surprising or unlikely outcomes described in natural language, prompting models to either rationalize seemingly odd images using everyday logic or uncover unexpected interpretations in ordinary scenes. To support this task, we propose a retrieval-based in-context learning (R-ICL) framework that transfers reasoning capabilities from larger models to smaller ones without additional training. Leveraging a novel Multimodal Ensemble Retriever (MER), our method identifies semantically relevant exemplars even when image and text pairs are deliberately discordant. Experiments show an average improvement of 8.3% over baseline ICL methods, highlighting the effectiveness of R-ICL in low-frequency, atypical settings. MUN opens new directions for evaluating and improving visual-language models' robustness and adaptability in real-world, culturally diverse, and non-prototypical scenarios.
Abstract:Residual connections are pivotal for deep neural networks, enabling greater depth by mitigating vanishing gradients. However, in standard residual updates, the module's output is directly added to the input stream. This can lead to updates that predominantly reinforce or modulate the existing stream direction, potentially underutilizing the module's capacity for learning entirely novel features. In this work, we introduce Orthogonal Residual Update: we decompose the module's output relative to the input stream and add only the component orthogonal to this stream. This design aims to guide modules to contribute primarily new representational directions, fostering richer feature learning while promoting more efficient training. We demonstrate that our orthogonal update strategy improves generalization accuracy and training stability across diverse architectures (ResNetV2, Vision Transformers) and datasets (CIFARs, TinyImageNet, ImageNet-1k), achieving, for instance, a +4.3\%p top-1 accuracy gain for ViT-B on ImageNet-1k.