Abstract:Sepsis, a life-threatening inflammatory response to infection, causes organ dysfunction, making early detection and optimal management critical. Previous reinforcement learning (RL) approaches to sepsis management rely primarily on structured data, such as lab results or vital signs, and on a dearth of a comprehensive understanding of the patient's condition. In this work, we propose a Multimodal Offline REinforcement learning for Clinical notes Leveraged Enhanced stAte Representation (MORE-CLEAR) framework for sepsis control in intensive care units. MORE-CLEAR employs pre-trained large-scale language models (LLMs) to facilitate the extraction of rich semantic representations from clinical notes, preserving clinical context and improving patient state representation. Gated fusion and cross-modal attention allow dynamic weight adjustment in the context of time and the effective integration of multimodal data. Extensive cross-validation using two public (MIMIC-III and MIMIC-IV) and one private dataset demonstrates that MORE-CLEAR significantly improves estimated survival rate and policy performance compared to single-modal RL approaches. To our knowledge, this is the first to leverage LLM capabilities within a multimodal offline RL for better state representation in medical applications. This approach can potentially expedite the treatment and management of sepsis by enabling reinforcement learning models to propose enhanced actions based on a more comprehensive understanding of patient conditions.
Abstract:This study develops a method to automatically count exercise repetitions by analyzing IMU signals, with a focus on a universal exercise repetition counting task that counts all types of exercise movements, including novel exercises not seen during training, using a single model. A key challenge in developing such a model is handling the considerable variation in peak patterns across different types of exercises. Since peak patterns can vary significantly between different exercises as well as between individuals performing the same exercise, the model needs to learn a complex embedding space of sensor data to generalize effectively. To address this challenge, we propose a repetition counting technique utilizing a deep metric-based few-shot learning approach, designed to handle both existing and novel exercises. By redefining the counting task as a few-shot classification problem, the method is capable of detecting peak repetition patterns in exercises not seen during training. The approach employs a Siamese network with triplet loss, optimizing the embedding space to distinguish between peak and non-peak frames. The proposed framework is composed of three main phases: standard classification training, few-shot training, and fine-tuning for novel exercises, followed by post-processing to refine the final repetition counts. Evaluation results demonstrate the effectiveness of the proposed approach, showing an 86.8% probability of accurately counting ten or more repetitions within a single set across 28 different exercises. This performance highlights the model's ability to generalize across various exercise types, including those not present in the training data. Such robustness and adaptability make the system a strong candidate for real-time implementation in fitness and healthcare applications.