Abstract:We present a novel framework for central pattern generator design that leverages the intrinsic rebound excitability of neurons in combination with winner-takes-all computation. Our approach unifies decision-making and rhythmic pattern generation within a simple yet powerful network architecture that employs all-to-all inhibitory connections enhanced by designable excitatory interactions. This design offers significant advantages regarding ease of implementation, adaptability, and robustness. We demonstrate its efficacy through a ring oscillator model, which exhibits adaptive phase and frequency modulation, making the framework particularly promising for applications in neuromorphic systems and robotics.
Abstract:We consider the design of a new class of passive iFIR controllers given by the parallel action of an integrator and a finite impulse response filter. iFIRs are more expressive than PID controllers but retain their features and simplicity. The paper provides a model-free data-driven design for passive iFIR controllers based on virtual reference feedback tuning. Passivity is enforced through constrained optimization (three different formulations are discussed). The proposed design does not rely on large datasets or accurate plant models.