Abstract:This paper introduces the Impact-Driven AI Framework (IDAIF), a novel architectural methodology that integrates Theory of Change (ToC) principles with modern artificial intelligence system design. As AI systems increasingly influence high-stakes domains including healthcare, finance, and public policy, the alignment problem--ensuring AI behavior corresponds with human values and intentions--has become critical. Current approaches predominantly optimize technical performance metrics while neglecting the sociotechnical dimensions of AI deployment. IDAIF addresses this gap by establishing a systematic mapping between ToC's five-stage model (Inputs-Activities-Outputs-Outcomes-Impact) and corresponding AI architectural layers (Data Layer-Pipeline Layer-Inference Layer-Agentic Layer-Normative Layer). Each layer incorporates rigorous theoretical foundations: multi-objective Pareto optimization for value alignment, hierarchical multi-agent orchestration for outcome achievement, causal directed acyclic graphs (DAGs) for hallucination mitigation, and adversarial debiasing with Reinforcement Learning from Human Feedback (RLHF) for fairness assurance. We provide formal mathematical formulations for each component and introduce an Assurance Layer that manages assumption failures through guardian architectures. Three case studies demonstrate IDAIF application across healthcare, cybersecurity, and software engineering domains. This framework represents a paradigm shift from model-centric to impact-centric AI development, providing engineers with concrete architectural patterns for building ethical, trustworthy, and socially beneficial AI systems.
Abstract:Green hydrogen production via polymer electrolyte membrane (PEM) water electrolysis is pivotal for energy transition, yet hydrogen crossover through membranes threatens safety and economic viability-approaching explosive limits (4 mol% H$_2$ in O$_2$) while reducing Faradaic efficiency by 2.5%. Current physics-based models require extensive calibration and computational resources that preclude real-time implementation, while purely data-driven approaches fail to extrapolate beyond training conditions-critical for dynamic electrolyzer operation. Here we present the first application of physics-informed neural networks (PINNs) for hydrogen crossover prediction, integrating mass conservation, Fick's diffusion law, and Henry's solubility law within a compact architecture (17,793 parameters). Validated across six membranes under industrially relevant conditions (0.05-5.0 A/cm$^2$, 1-200 bar, 25-85°C), our PINN achieves exceptional accuracy (R$^{2}$ = 99.84% $\pm$ 0.15\%, RMSE = 0.0932% $\pm$ 0.0438%) based on five-fold cross-validation, with sub-millisecond inference times suitable for real-time control. Remarkably, the model maintains R$^2$ > 86% when predicting crossover at pressures 2.5x beyond training range-substantially outperforming pure neural networks (R$^2$ = 43.4%). The hardware-agnostic deployment, from desktop CPUs to edge devices (Raspberry Pi 4), enables distributed safety monitoring essential for gigawatt-scale installations. By bridging physical rigor and computational efficiency, this work establishes a new paradigm for real-time electrolyzer monitoring, accelerating deployment of safe, efficient green hydrogen infrastructure crucial for net-zero emissions targets.