Abstract:Recent advancements in deep neural networks have shown promise in aiding disease diagnosis and medical decision-making. However, ensuring transparent decision-making processes of AI models in compliance with regulations requires a comprehensive understanding of the model's internal workings. However, previous methods heavily rely on expensive pixel-wise annotated datasets for interpreting the model, presenting a significant drawback in medical domains. In this paper, we propose a novel medical neuron concept annotation method, named Mask-free Medical Model Interpretation (MAMMI), addresses these challenges. By using a vision-language model, our method relaxes the need for pixel-level masks for neuron concept annotation. MAMMI achieves superior performance compared to other interpretation methods, demonstrating its efficacy in providing rich representations for neurons in medical image analysis. Our experiments on a model trained on NIH chest X-rays validate the effectiveness of MAMMI, showcasing its potential for transparent clinical decision-making in the medical domain. The code is available at https://github.com/ailab-kyunghee/MAMMI.
Abstract:Recent advancements in neural networks have showcased their remarkable capabilities across various domains. Despite these successes, the "black box" problem still remains. Addressing this, we propose a novel framework, WWW, that offers the 'what', 'where', and 'why' of the neural network decisions in human-understandable terms. Specifically, WWW utilizes adaptive selection for concept discovery, employing adaptive cosine similarity and thresholding techniques to effectively explain 'what'. To address the 'where' and 'why', we proposed a novel combination of neuron activation maps (NAMs) with Shapley values, generating localized concept maps and heatmaps for individual inputs. Furthermore, WWW introduces a method for predicting uncertainty, leveraging heatmap similarities to estimate 'how' reliable the prediction is. Experimental evaluations of WWW demonstrate superior performance in both quantitative and qualitative metrics, outperforming existing methods in interpretability. WWW provides a unified solution for explaining 'what', 'where', and 'why', introducing a method for localized explanations from global interpretations and offering a plug-and-play solution adaptable to various architectures.
Abstract:It is important to quantify the uncertainty of input samples, especially in mission-critical domains such as autonomous driving and healthcare, where failure predictions on out-of-distribution (OOD) data are likely to cause big problems. OOD detection problem fundamentally begins in that the model cannot express what it is not aware of. Post-hoc OOD detection approaches are widely explored because they do not require an additional re-training process which might degrade the model's performance and increase the training cost. In this study, from the perspective of neurons in the deep layer of the model representing high-level features, we introduce a new aspect for analyzing the difference in model outputs between in-distribution data and OOD data. We propose a novel method, Leveraging Important Neurons (LINe), for post-hoc Out of distribution detection. Shapley value-based pruning reduces the effects of noisy outputs by selecting only high-contribution neurons for predicting specific classes of input data and masking the rest. Activation clipping fixes all values above a certain threshold into the same value, allowing LINe to treat all the class-specific features equally and just consider the difference between the number of activated feature differences between in-distribution and OOD data. Comprehensive experiments verify the effectiveness of the proposed method by outperforming state-of-the-art post-hoc OOD detection methods on CIFAR-10, CIFAR-100, and ImageNet datasets.