Abstract:Federated Learning (FL) enables collaborative training across multiple clients while preserving data privacy, yet it struggles with data heterogeneity, where clients' data are not distributed independently and identically (non-IID). This causes local drift, hindering global model convergence. To address this, we introduce Federated Learning with Feedback Alignment (FLFA), a novel framework that integrates feedback alignment into FL. FLFA uses the global model's weights as a shared feedback matrix during local training's backward pass, aligning local updates with the global model efficiently. This approach mitigates local drift with minimal additional computational cost and no extra communication overhead. Our theoretical analysis supports FLFA's design by showing how it alleviates local drift and demonstrates robust convergence for both local and global models. Empirical evaluations, including accuracy comparisons and measurements of local drift, further illustrate that FLFA can enhance other FL methods demonstrating its effectiveness.
Abstract:Federated learning is a distributed machine learning paradigm that allows multiple participants to train a shared model by exchanging model updates instead of their raw data. However, its performance is degraded compared to centralized approaches due to data heterogeneity across clients. While contrastive learning has emerged as a promising approach to mitigate this, our theoretical analysis reveals a fundamental conflict: its asymptotic assumptions of an infinite number of negative samples are violated in finite-sample regime of federated learning. To address this issue, we introduce Decoupled Contrastive Learning for Federated Learning (DCFL), a novel framework that decouples the existing contrastive loss into two objectives. Decoupling the loss into its alignment and uniformity components enables the independent calibration of the attraction and repulsion forces without relying on the asymptotic assumptions. This strategy provides a contrastive learning method suitable for federated learning environments where each client has a small amount of data. Our experimental results show that DCFL achieves stronger alignment between positive samples and greater uniformity between negative samples compared to existing contrastive learning methods. Furthermore, experimental results on standard benchmarks, including CIFAR-10, CIFAR-100, and Tiny-ImageNet, demonstrate that DCFL consistently outperforms state-of-the-art federated learning methods.