Abstract:By contrast with the prevailing works of low-light enhancement in natural images and videos, this study copes with the low-illumination quality degradation in anime scenery images to bridge the domain gap. For such an underexplored enhancement task, we first curate images from various sources and construct an unpaired anime scenery dataset with diverse environments and illumination conditions to address the data scarcity. To exploit the power of uncertainty information inherent with the diverse illumination conditions, we propose a Data Relativistic Uncertainty (DRU) framework, motivated by the idea from Relativistic GAN. By analogy with the wave-particle duality of light, our framework interpretably defines and quantifies the illumination uncertainty of dark/bright samples, which is leveraged to dynamically adjust the objective functions to recalibrate the model learning under data uncertainty. Extensive experiments demonstrate the effectiveness of DRU framework by training several versions of EnlightenGANs, yielding superior perceptual and aesthetic qualities beyond the state-of-the-art methods that are incapable of learning from data uncertainty perspective. We hope our framework can expose a novel paradigm of data-centric learning for potential visual and language domains. Code is available.
Abstract:Biomedical segmentation networks easily suffer from the unexpected misclassification between foreground and background objects when learning on limited and imperfect medical datasets. Inspired by the strong power of Out-of-Distribution (OoD) data on other visual tasks, we propose a data-centric framework, Med-OoD to address this issue by introducing OoD data supervision into fully-supervised biomedical segmentation with none of the following needs: (i) external data sources, (ii) feature regularization objectives, (iii) additional annotations. Our method can be seamlessly integrated into segmentation networks without any modification on the architectures. Extensive experiments show that Med-OoD largely prevents various segmentation networks from the pixel misclassification on medical images and achieves considerable performance improvements on Lizard dataset. We also present an emerging learning paradigm of training a medical segmentation network completely using OoD data devoid of foreground class labels, surprisingly turning out 76.1% mIoU as test result. We hope this learning paradigm will attract people to rethink the roles of OoD data. Code is made available at https://github.com/StudioYG/Med-OoD.