Abstract:In dialogue generation, the naturalness of responses is crucial for effective human-machine interaction. Personalized response generation poses even greater challenges, as the responses must remain coherent and consistent with the user's personal traits or persona descriptions. We propose MUDI ($\textbf{Mu}$ltiple $\textbf{Di}$scourse Relations Graph Learning) for personalized dialogue generation. We utilize a Large Language Model to assist in annotating discourse relations and to transform dialogue data into structured dialogue graphs. Our graph encoder, the proposed DialogueGAT model, then captures implicit discourse relations within this structure, along with persona descriptions. During the personalized response generation phase, novel coherence-aware attention strategies are implemented to enhance the decoder's consideration of discourse relations. Our experiments demonstrate significant improvements in the quality of personalized responses, thus resembling human-like dialogue exchanges.
Abstract:We present CFEVER, a Chinese dataset designed for Fact Extraction and VERification. CFEVER comprises 30,012 manually created claims based on content in Chinese Wikipedia. Each claim in CFEVER is labeled as "Supports", "Refutes", or "Not Enough Info" to depict its degree of factualness. Similar to the FEVER dataset, claims in the "Supports" and "Refutes" categories are also annotated with corresponding evidence sentences sourced from single or multiple pages in Chinese Wikipedia. Our labeled dataset holds a Fleiss' kappa value of 0.7934 for five-way inter-annotator agreement. In addition, through the experiments with the state-of-the-art approaches developed on the FEVER dataset and a simple baseline for CFEVER, we demonstrate that our dataset is a new rigorous benchmark for factual extraction and verification, which can be further used for developing automated systems to alleviate human fact-checking efforts. CFEVER is available at https://ikmlab.github.io/CFEVER.