Abstract:Recovering a drone on a disturbed water surface remains a significant challenge in maritime robotics. In this paper, we propose a unified framework for Robot-Assisted Drone Recovery on a Wavy Surface that addresses two major tasks: Firstly, accurate prediction of a moving drone's position under wave-induced disturbances using an Error-State Kalman Filter (ESKF), and secondly, effective motion planning for a manipulator via Receding Horizon Control (RHC). Specifically, the ESKF predicts the drone's future position 0.5s ahead, while the manipulator plans a capture trajectory in real time, thus overcoming not only wave-induced base motions but also limited torque constraints. We provide a system design that comprises a manipulator subsystem and a UAV subsystem. On the UAV side, we detail how position control and suspended payload strategies are implemented. On the manipulator side, we show how an RHC scheme outperforms traditional low-level control algorithms. Simulation and real-world experiments - using wave-disturbed motion data - demonstrate that our approach achieves a high success rate - above 95% and outperforms conventional baseline methods by up to 10% in efficiency and 20% in precision. The results underscore the feasibility and robustness of our system, which achieves state-of-the-art (SOTA) performance and offers a practical solution for maritime drone operations.