Abstract:Augmented reality (AR) offers immersive interaction but remains inaccessible for users with motor impairments or limited dexterity due to reliance on precise input methods. This study proposes a gesture-based interaction system for AR environments, leveraging deep learning to recognize hand and body gestures from wearable sensors and cameras, adapting interfaces to user capabilities. The system employs vision transformers (ViTs), temporal convolutional networks (TCNs), and graph attention networks (GATs) for gesture processing, with federated learning ensuring privacy-preserving model training across diverse users. Reinforcement learning optimizes interface elements like menu layouts and interaction modes. Experiments demonstrate a 20% improvement in task completion efficiency and a 25% increase in user satisfaction for motor-impaired users compared to baseline AR systems. This approach enhances AR accessibility and scalability. Keywords: Deep learning, Federated learning, Gesture recognition, Augmented reality, Accessibility, Human-computer interaction
Abstract:Wearable devices, such as smartwatches and head-mounted displays, are increasingly used for prolonged tasks like remote learning and work, but sustained interaction often leads to user fatigue, reducing efficiency and engagement. This study proposes a fatigue-aware adaptive interface system for wearable devices that leverages deep learning to analyze physiological data (e.g., heart rate, eye movement) and dynamically adjust interface elements to mitigate cognitive load. The system employs multimodal learning to process physiological and contextual inputs and reinforcement learning to optimize interface features like text size, notification frequency, and visual contrast. Experimental results show a 18% reduction in cognitive load and a 22% improvement in user satisfaction compared to static interfaces, particularly for users engaged in prolonged tasks. This approach enhances accessibility and usability in wearable computing environments.